
Lasso Regression이란?Lasso Regression은 과적합(overfitting)을 방지하고 모델을 단순화하기 위해 고안된 선형 회귀의 확장 기법입니다. 특히 변수가 많은 경우, 불필요한 변수를 자동으로 제거해주기 때문에 해석 가능하고 일반화 성능이 높은 모델을 만들 수 있습니다.Lasso Regression의 개념Lasso는 Least Absolute Shrinkage and Selection Operator의 줄임말로, L1 정규화 항을 포함한 회귀 모델입니다.일반 선형 회귀 식:y = β₀ + β₁x₁ + β₂x₂ + ... + βₙxₙ + εLasso 회귀의 손실 함수:Loss = RSS + λ \* Σ|βᵢ|RSS: 잔차 제곱합 (Residual Sum of Squares)λ: 규..