TL;DRAI Sales Forecasting에서 피처 기반 머신러닝(GBDT)은 “시계열을 회귀 문제로 변환”해 대량 SKU/매장 예측을 안정적으로 확장합니다.핵심은 (1) 라그/롤링/캘린더/외생변수 설계, (2) 누수 방지(point-in-time), (3) 롤링 오리진 백테스트, (4) WAPE 중심 평가, (5) 분위수(quantile)로 불확실성까지 한 번에 엮는 것입니다.이번 편에서는 “실무 파이프라인”을 그대로 따라 만들 수 있게 데이터 스키마, 피처 분류, 학습/검증, 운영 체크리스트를 제공합니다.본문TOC피처 기반 ML 판매 예측의 정의와 범위데이터 스키마: (store, item) 패널을 “롱 포맷”으로 고정피처 설계: 라그/롤링/캘린더/외생변수(Static/Dynamic/Calenda..